World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Outlier Degree Shilling Attack Detection Algorithm Based on Dynamic Feature Selection

    https://doi.org/10.1142/S0218194019500360Cited by:6 (Source: Crossref)

    Recommender system is widely used in various fields for dealing with information overload effectively, and collaborative filtering plays a vital role in the system. However, recommender system suffers from its vulnerabilities by malicious attacks significantly, especially, shilling attacks because of the open nature of recommender system and the dependence on data. Therefore, detecting shilling attack has become an important issue to ensure the security of recommender system. Most of the existing methods of detecting shilling attack are based on user ratings, and one limitation is that they are likely to be interfered by obfuscation techniques. Moreover, traditional detection algorithms cannot handle different types of shilling attacks flexibly. In order to solve the problems, we proposed an outlier degree shilling attack detection algorithm by using dynamic feature selection. Considering the differences when users choose items, we combined rating-based indicators with user popularity, and utilized the information entropy to select detection indicators dynamically. Therefore, a variety of shilling attack models can be dealt with flexibility in this way. The experiments show that the proposed algorithm can achieve better detection performance and interference immunity.