World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Recent Advances in Techniques for Intelligent Systems; Guest Editors: Susan Haller and Ingrid RussellNo Access

PRESERVING RECOMMENDER ACCURACY AND DIVERSITY IN SPARSE DATASETS

    https://doi.org/10.1142/S0218213004001491Cited by:15 (Source: Crossref)

    Recommender systems combine research from user profiling, information filtering and artificial intelligence to provide users with more intelligent information access. They have proven to be useful in a range of Internet and e-commerce applications. Recent research has shown that a content-based (or case-based) perspective on collaborative filtering for recommendation can provide significant benefits in decision support accuracy over traditional collaborative techniques, particularly as dataset sparsity increases. These benefits derive both from the use of more sophisticated case-based similarity metrics and from the proactive maintenance of item similarity knowledge using data mining. This article presents a natural next step in this ongoing research to improve the quality of recommender systems by validating these findings in the context of more complex models of collaborative filtering, as well as by demonstrating that such techniques also preserve recommendation diversity, one of the key issues affecting traditional recommender systems.