World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECTS OF POROUS g-C3N4 NANOSHEETS AND STEARIC ACID ON THE DURABILITY OF WATERBORNE ACRYLIC RESIN COATING

    https://doi.org/10.1142/S0218625X23500488Cited by:0 (Source: Crossref)

    Durability is a key factor to determine the service life of organic coating. The addition of nanomaterials can improve the mechanical properties and compactness of the organic coatings. As a kind of nanomaterial, g-C3N4 has lamellar structure and can be excited by visible light. At the same time, its cost is low. So it can be selected as a filler to prepare organic coating. The lamellar structure of g-C3N4 is favorable for its dispersion in organic coatings. Stearic acid is an environmentally friendly material with low surface energy. It can improve the hydrophobicity of the coating. In this research, porous g-C3N4 nanosheets were used as filler and stearic acid was used as surface modifier to prepare waterborne acrylic resin-based organic composite coating. The chemical reagent durability, electrochemical durability and mechanical properties of the composite coating were tested. At the same time, the photocatalytic degradation performance of the coating surface was also tested. The results showed that g-C3N4 as filler and stearic acid could effectively improve the durability of the waterborne acrylic resin coating. Meanwhile, the coating surface has obvious visible light-activated photocatalytic performance due to the addition of g-C3N4.