World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LARGE TIME BEHAVIOR OF SOLUTIONS TO A SEMILINEAR HYPERBOLIC SYSTEM WITH RELAXATION

    https://doi.org/10.1142/S0219891607001082Cited by:12 (Source: Crossref)

    We are concerned with the initial value problem for a damped wave equation with a nonlinear convection term which is derived from a semilinear hyperbolic system with relaxation. We show the global existence and asymptotic decay of solutions in W1,p (1 ≤ p ≤ ∞) under smallness condition on the initial data. Moreover, we show that the solution approaches in W1,p (1 ≤ p ≤ ∞) the nonlinear diffusion wave expressed in terms of the self-similar solution of the Burgers equation as time tends to infinity. Our results are based on the detailed pointwise estimates for the fundamental solutions to the linearlized equation.

    AMSC: 35L65, 35L45, 35B40, 76N15