Approximating the minimum-norm fixed point of pseudocontractive mappings
Abstract
We introduce an iterative process which converges strongly to the minimum-norm fixed point of Lipschitzian pseudocontractive mapping. As a consequence, convergence result to the minimum-norm zero of monotone mappings is proved. In addition, applications to convexly constrained linear inverse problems and convex minimization problems are included. Our theorems improve and unify most of the results that have been proved for this important class of nonlinear operators.