SOFT MAGNETIC PROPERTIES OF Mg0.7-xNi0.3ZnxFe2O4 FERRITES SYNTHESIZED BY SOL-GEL AUTO-COMBUSTION TECHNIQUE WITHOUT POST-PREPARATION THERMAL TREATMENT
Abstract
Single phase nanocrystalline soft magnetic Mg0.7-xNi0.3ZnxFe2O4, ferrites with x = 0.0 − 0.7 were prepared by sol gel auto-combustion method. X-ray diffraction confirms the formation of single phase nano-crystalline cubic spinel ferrites with average grain diameter ranging between 12.9 nm to 23.9 nm. Formation of the ferrite phase without subsequent heat treatment makes sol-gel auto combustion technique especially suitable and economical for the large scale industrial production of the nano-crystalline ferrites for multilayer chip inductor applications (MLCI). Both, lattice parameter and X-ray density shows a linear increase with increasing Zn2+ concentration, attributed to the difference in ionic radii and density of Mg and Zn. Increase in Zn content enhances the soft magnetic behavior, exhibiting linear decrease of coercivity from 122.34 Oe to 72.45 Oe, explained by increase of density with Zn addition. The maximum magnetization (Mmax)increases up to 0.106 Tesla (for x = 0.4) and. then decreases with increase of Zn content, discussed on the basis of increase of the occupancy of A-site in spinel ferrite by non-magnetic Zn2+ ion.