Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume I: Linear Algebra for Computer Vision, Robotics, and Machine Learning
by Jean Gallier and Jocelyn Quaintance
Linear Algebra and Optimization with Applications to Machine Learning
Linear Algebra and Optimization with Applications to Machine Learning

Volume II: Fundamentals of Optimization Theory with Applications to Machine Learning
by Jean Gallier and Jocelyn Quaintance

 

  • articleNo Access

    Using 3D Convolutional Neural Networks for Real-time Detection of Soccer Events

    Developing systems for the automatic detection of events in video is a task which has gained attention in many areas including sports. More specifically, event detection for soccer videos has been studied widely in the literature. However, there are still a number of shortcomings in the state-of-the-art such as high latency, making it challenging to operate at the live edge. In this paper, we present an algorithm to detect events in soccer videos in real time, using 3D convolutional neural networks. We test our algorithm on three different datasets from SoccerNet, the Swedish Allsvenskan, and the Norwegian Eliteserien. Overall, the results show that we can detect events with high recall, low latency, and accurate time estimation. The trade-off is a slightly lower precision compared to the current state-of-the-art, which has higher latency and performs better when a less accurate time estimation can be accepted. In addition to the presented algorithm, we perform an extensive ablation study on how the different parts of the training pipeline affect the final results.