World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

In Plane Radial Vibration of Uncracked and Cracked Circular Curved Beams Subjected to Moving Loads

    https://doi.org/10.1142/S0219455421501467Cited by:6 (Source: Crossref)

    The dynamic response of structures subjected to moving load is a subject of great importance from a practical point of view. In this work, the in-plane dynamic response of a cracked isotropic circular curved beam subjected to moving loads is investigated using the finite element method. The curved beam is modeled using curved beam elements, which is developed based on the Timoshenko beam theory. Furthermore, a cracked curved beam element is developed to incorporate the presence of cracks in the structure. The effect of moving load speed, depth, and the location of the crack on the dynamic response of the beam is investigated. The outcome of the work can be useful in the study of real-life moving load problems like bridges and railways and also in the field of condition monitoring using moving loads.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures