Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The BRICS (Brazil, Russia, India, China and South Africa) acronym was created by the International Monetary Foundation (IMF)–Group of Seven (G7) to represent the bloc of developing economies which crucially impact on the global economy by their potential economic growth. Most of the foreign direct investment are considering the stock markets of BRICS as the most attractive destination for foreign portfolio investment. This study aims to identify the relationship between macroeconomic variables and the stock market index values of BRICS and generate accurate predictions for index values by performing linear regression and artificial neural network hybrid models. Monthly data from January 2003 to December 2019 are used for the empirical study. The results indicate that a strong correlation exists between the stock market and macroeconomic variables in BRICS over time. The hybrid model is observed very accurate for index value prediction where the mean absolute percentage error (MAPE) value is 0.714% for the whole data set covering all BRICS countries data during the study period. Additionally, MAPE values for each of the BRICS countries are, respectively, obtained as 0.083%, 2.316%, 0.116%, 0.962% and 0.092%. Thus, the main findings of this study show that while neural network-integrated models have high performances for volatile stock market prediction, macroeconomic stabilization should be the priority of monetary policy to prevent the high volatility of stock markets.
This paper addresses the problem of reconstructing a slowly-varying information-bearing signal from a parametrically modulated, nonstationary dynamical signal. A chaotic electronic oscillator model characterized by one control parameter and a double-scroll-like attractor is used throughout the study. Wavelet transforms are used to extract features of the chaotic signal resulting from parametric modulation of the control parameter by the useful signal. The vector of feature coefficients is fed into a feed-forward neural network that recovers the embedded information-bearing signal. The performance of the developed method is cross-validated through reconstruction of randomly-generated control parameter patterns. This method is applied to the reconstruction of speech signals, thus demonstrating its potential utility for secure communication applications. Our results are validated via numerical simulations.