Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    EARLY DETECTION AND VISUALIZATION OF BREAST TUMOR WITH THERMOGRAM AND NEURAL NETWORK

    Although mammography is still the benchmark technique for breast cancer detection, many advantages of thermography make it a suitable adjunct tool for early detection. This paper describes the development of a computer-aided system for use together with thermography to assist in the detection and visualization/analysis of breast tumors. The system consists of a detection module for predicting the presence of tumors from thermograms, and a visualization module for generating the 3-D volumetric geometry of the suspected tumor inside the breast based on the 2-D thermogram. Detection is achieved through an artificial neural network taking the thermogram image as input, while the visualization is obtained by generating the 3-D model of the breast that produces a matching thermal image as the thermogram under a 3-D finite element analysis. A study with 200 subjects indicate that the detection sensitivity was good but the specificity was poor, but the reverse performance result was true for another back-propagation neural network which used physiological data instead of thermograms as input. This suggests that overall prediction capability can be improved by appropriate combination of the two results.

  • articleNo Access

    DEVELOPING CASE-BASED REASONING FOR DISCOVERY OF BREAST CANCER

    The treatment of early development of breast tumor has a higher success rate. This paper presents a framework for the early discovery of breast cancer. The objective is to assist the general practitioners and specialists in the detection of breast tumor. The proposed detection process consists of a preliminary screening process and a prediction process. The preliminary screening process using thermography aims to complement the detailed screening operation using mammography. The prediction process using artificial intelligence techniques aims to use past records of other similar cases to enhance the forecast of breast cancer development. The paper discusses the issues and techniques for the implementation of the proposed framework. These include the preliminary screening process, the retrieval of the relevant cases, and the prediction of the risk of developing breast cancer based on the thermographs, environmental/social data, physiological information, genetic factors, and medical records. This work constitutes initial effort to lessen the burden of medical professionals and increase the chances of successful treatment for patients in the fight against breast cancer.

  • articleNo Access

    AUTOMATION OF MR BRAIN IMAGE CLASSIFICATION FOR MALIGNANCY DETECTION

    Magnetic resonance imaging (MRI) plays an integral role among the advanced techniques for detecting a brain tumor. The early detection of brain tumor with proper automation algorithm results in assisting oncologists to make easy decisions for diagnostic purposes. This paper presents an automatic classification of MR brain images in normal and malignant conditions. The feature extraction is done with gray-level co-occurrence matrix, and we proposed a feature reduction technique based on statistical test which is preceded by principal component analysis (PCA). The main focus of the work is to establish the statistical significance of the features obtained after PCA, thereby selecting significant feature values for subsequent classification. For that, a t-test is performed which yielded a p-value of 0.05. Finally, a comparative study using k-nearest neighbor (kNN), support vector machine and artificial neural network (ANN)-based supervised classifiers is performed. In this work, we could achieve reasonably good sensitivity, specificity and accuracy for all the classifiers. The ANN classifier gives better performance with sensitivity of 97.33%, specificity of 97.42% and accuracy of 98.66% on the whole brain atlas database. The experimental results obtained are comparable to the other recent state-of-the-art.