Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the present paper, the flexural behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate is investigated under the combined thermo-mechanical load. The carbon nanotube reinforced composite plate has been modeled mathematically based on the higher order shear deformation theory. The governing differential equation of the FG-CNTRC plate is obtained using the variational method and discretized using the suitable isoparametric finite element steps and solved numerically through a computer code developed in MATLAB environment. The material properties of the carbon nanotube reinforced composite plate are assumed to be temperature dependent and graded in the thickness direction using different grading rules. The validity and the convergence behavior of the presently proposed numerical model have been checked by comparing the responses with results available in published literature and subsequent simulation model developed in ANSYS. The effect of various design parameters (aspect ratios, support conditions, thickness ratios, volume fractions, temperature load and types of grading) on the static, stress and deformation behavior of the FG-CNTRC plate are examined under the influence of different types of loading (uniformly distributed load, sinusoidally distributed load, uniformly distributed line load, sinusoidally distributed line load and point load) and discussed detail.
This paper presents a methodology to use the software ANSYS in modeling and active vibration control of a functionally graded (FGM) plate with upper and lower surface-bonded piezoelectric layers. First a FGM plate with piezoelectric layers is designed using APDL ANSYS. Then a modal analysis has been carried out to get the first five rank frequencies and mode shapes. A proportional–integral–derivative (PID) and a linear-quadratic-based output feedback controller are introduced to realize the vibration control through a closed loop. Results for various volume fraction indexes are presented.
It has been observed by performing simple and diagonal compression tests of cob wallettes that the structural behavior of cob is highly nonlinear. This paper presents the results obtained of the simulation of cob’s nonlinear monotonic behavior using two well-known finite element commercial packages. Pros and cons of different available constitutive material models are identified and discussed. Concrete (CONCR) and Concrete Damaged Plasticity (CDP) are considered as the constitutive material models that provide the more satisfactory results reproducing cob’s nonlinear monotonic behavior when using ANSYS and ABAQUS, respectively.