Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this article, particle image velocimetry (PIV) technique was used to determine the instantaneous velocity fields inside a model of end-to-side anastomosis under various physiological flow conditions. Using ANSYS software, a three-dimensional (3D) computational model at the peak systolic blood flow was simulated. The numerical and experimental results were presented and discussed in terms of velocity fields at various locations along the graft and the host artery. The numerical results were then compared with the experimental data and a large difference was found, which was attributed to the imperfection of manufacturing the glass model and measurements error associated with PIV. The findings indicated in general that the analysis at peak systole, steady flow could help in providing essential quantitative information of the hemodynamics in anastomotic artery.