Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Autism spectrum disorder (ASD) is a mental developmental disorder associated with social and communicational defects and Stereotypical Motor Movements (SMM). SMM is a set of repetitive motor activities associated with several mental developmental disorders like Autism. SMM has several forms like arm flapping, head banging, ear covering, and spinning with various degrees of severity that might lead to self-injury in severe cases.
Developing a computer-vision-based technology to detect noticeable SMM behaviors can help in the early diagnosis of autism. In this paper, a computer vision-based neural network model was proposed to detect and recognize repetitive motor behaviors. The proposed model went through three main stages: First, data preparation. Second, human body features extraction using deep learning pose estimation and the skeleton representation model, and finally, multiclass classification to distinguish between several classes of headbanging. The proposed solution was evaluated using the Self Stimulatory Behavior Dataset (SSBD) which is a public dataset of three classes of repetitive motor behaviors associated with autism. We also collected a set of 40 videos of autistic children exhibiting headbanging from public domains like YouTube. In addition to that, we captured 25 videos of typically developing subjects mimicking headbanging. The collected and the videoed videos were used to evaluate the proposed model. This work proves the applicability of diagnosing mental developmental syndrome symptoms using vision-based techniques in cooperation with neural networks. The produced results prove that the used techniques can operate well in real-world challenging applications. The proposed model achieved 85.5% accuracy on SSBD and 93% on the collected and recorded videos.
Functional Magnetic Resonance Imaging (fMRI), for many decades acts as a potential aiding method for diagnosing medical problems. Several successful machine learning algorithms have been proposed in literature to extract valuable knowledge from fMRI. One of these algorithms is the convolutional neural network (CNN) that competent with high capabilities for learning optimal abstractions of fMRI. This is because the CNN learns features similarly to human brain where it preserves local structure and avoids distortion of the global feature space. Focusing on the achievements of using the CNN for the fMRI, and accordingly, the Deep Convolutional Auto-Encoder (DCAE) benefits from the data-driven approach with CNN’s optimal features to strengthen the fMRI classification. In this paper, a new two consequent multi-layers DCAE deep discriminative approach for classifying fMRI Images is proposed. The first DCAE is unsupervised sub-model that is composed of four CNN. It focuses on learning weights to utilize discriminative characteristics of the extracted features for robust reconstruction of fMRI with lower dimensional considering tiny details and refining by its deep multiple layers. Then the second DCAE is a supervised sub-model that focuses on training labels to reach an outperformed results. The proposed approach proved its effectiveness and improved literately reported results on a large brain disorder fMRI dataset.