Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Lower bound estimation plays an important role for establishing the minimax risk. A key step in lower bound estimation is deriving a lower bound of the affinity between two probability measures. This paper provides a simple method to estimate the affinity between mixture probability measures. Then we apply the lower bound of the affinity to establish the minimax lower bound for a family of sparse covariance matrices, which contains Cai–Ren–Zhou’s theorem in [T. Cai, Z. Ren and H. Zhou, Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electron. J. Stat. 10(1) (2016) 1–59] as a special example.