Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    STUDY OF AFFINITIES BETWEEN SINGLE-WALLED NANOTUBE AND EPOXY RESIN USING MOLECULAR DYNAMICS SIMULATION

    In the processing of carbon nanotube/polymer composites, the interactions between the nanotube and polymer matrix will occur at the molecular level. Understanding their interactions before curing is crucial for nanocomposites processing. In this study, molecular dynamics (MD) simulations were employed to reveal molecular interactions between (10, 10) single-walled nanotube and two kinds of epoxy resin systems. The two kinds of resin systems were EPON 862/EPI-CURE W curing agent (DETDA) and DGEBA (diglycidylether of bisphenol A)diethylenetriamine (DETA) curing agent. The MD simulation results show that the EPON 862, DETDA and DGEBA molecules had strong attractive interactions with single-walled nanotubes and their molecules changed their conformation to align their aromatic rings parallel to the nanotube surface due to π-stacking effect, whereas the DETA molecule had a repulsive interaction with the single-walled nanotubes. The interaction energies of the molecular systems were also calculated. Furthermore, an affinity index (AI) of the average distance between the atoms of the resin molecule and nanotube surface was defined to quantify the affinities between the nanotubes and resin molecules. The MD simulation results show that the EPON 862/EPI-CURE W curing agent system has good affinities with single-walled nanotubes.