Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PREFERENTIAL ATTACHMENT, AGING AND WEIGHTS IN RECOMMENDATION SYSTEMS

    In the present work, algorithms based on complex network theory are applied to Recommendation Systems in order to improve their quality of predictions. We show how some networks are grown under the influence of trendy forces, and how this can be used to enhance the results of a recommendation system, i.e. increase their percentage of right predictions. After defining a base algorithm, we create recommendation networks which are based on a histogram of user ratings, using therefore an underlying principle of preferential attachment. We show the influence of data aging in the prediction of user habits and how the exact moment of the prediction influences the recommendation. Finally, we design weighted networks that take into account the age of the information used to generate the links. In this way, we obtain a better approximation to evaluate the users' tastes.