Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Recent research in coarse geometry revealed similarities between certain concepts of analysis, large scale geometry, and topology. Property A of Yu is the coarse analog of amenability for groups and its generalization (exact spaces) was later strengthened to be the large scale analog of paracompact spaces using partitions of unity. In this paper we go deeper into divulging analogies between coarse amenability and paracompactness. In particular, we define a new coarse analog of paracompactness modeled on the defining characteristics of expanders. That analog gives an easy proof of three categories of spaces being coarsely non-amenable: expander sequences, graph spaces with girth approaching infinity, and unions of powers of a finite nontrivial group.
The objective of this series is to study metric geometric properties of (coarse) disjoint unions of amenable Cayley graphs. We employ the Cayley topology and observe connections between large scale structure of metric spaces and group properties of Cayley accumulation points. In Part I, we prove that a disjoint union has property A of Yu if and only if all groups appearing as Cayley accumulation points in the space of marked groups are amenable. As an application, we construct two disjoint unions of finite special linear groups (and unimodular linear groups) with respect to two systems of generators that look similar such that one has property A and the other does not admit (fibered) coarse embeddings into any Banach space with nontrivial type (for instance, any uniformly convex Banach space).