Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ANALYTIC SOLUTIONS TO THE OSCILLATORY BEHAVIOR AND PRIMARY RESONANCE OF ELECTROSTATICALLY ACTUATED MICROBRIDGES

    In this paper, the vibration and primary resonance of electrostatically actuated microbridges are investigated, with the effects of electrostatic actuation, axial stress, and mid-plane stretching considered. Galerkin's decomposition method is adopted to convert the governing nonlinear partial differential equation to a nonlinear ordinary differential equation. The homotopy perturbation method (a special case of homotopy analysis method) is then employed to find the analytic expressions for the natural frequencies of predeformed microbridges, by which the effects of the voltage, mid-plane stretching, axial force, and higher mode contribution on the natural frequencies are studied. The primary resonance of the microbridges is also investigated, where the microbridges are predeformed by a DC voltage and driven to vibrate by an AC harmonic voltage. The methods of homotopy perturbation and multiple scales are combined to find the analytic solution for the steady-state motion of the microbeam. In addition, the effects of the design parameters and damping on the dynamic responses are discussed. The results are shown to be in good agreement with the existing ones.