Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    Mechanical behavior of crystalline ionic porphyrins

    Mechanical properties of six different binary ionic porphyrin crystals with variable morphologies were measured and correlated with their structural properties. These solids were formed from stoichiometric combinations of negatively charged tectons, meso-tetra(4-sulfonatophenyl) porphyrin (TSPP), Cu(II) meso-tetra(4-sulfonatophenyl)porphyrin (CuTSPP), Ni(II) meso-tetra (4-sulfonatophenyl)porphyrin (NiTSPP), and four different cationic tectons, namely, meso-tetra (4-pyridyl)porphyrin (TPyP), tetra(N-methyl-4-pyridyl)porphyrin (TMPyP), Cu(II) meso-tetra(Nmethyl- 4-pyridyl)porphyrin (CuTMPyP), Ni(II) meso-tetra(N-methyl-4-pyridyl)porphyrin (NiTMPyP), and tetra(4-aminophenyl)porphyrin (TAPP). Crystal structures were determined from single crystal and powder X-ray diffraction patterns. Scanning electron and atomic force microscopes (SEM and AFM) provided topographical information. The common arrangement of the porphyrin tectons within the crystals is consistent with alternating face-to-face molecular arrangement forming coherent columns along the fast-growing long axis which are held together by electrostatic and π–π interactions as well as hydrogen bonding. In acquiring the indentation data of the porphyrin crystals using AFM, stress was applied perpendicular to the direction where ionic and π–π bonds dominate the packing. At indent loads ≤50 nN/nm2, all the porphyrin structures deformed elastically. Young’s modulus (E) values for the different crystals range from 6 to 28 GPa. In a broader perspective, this study highlights the extraordinary mechanical behavior of porphyrin assemblies formed by ionic self-assembly. Judicious selection of charged porphyrin synthons can yield crystalline materials with mechanical properties that combine the elastic characteristics of ‘soft’ polymers with the stiffness of composite materials. Such high-performance materials are excellent candidates for deformable optoelectronic devices.