Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

Bestsellers

The Collected Papers of Stephen Smale
The Collected Papers of Stephen Smale

In 3 Volumes
edited by F Cucker and R Wong
Fields Medallists' Lectures
Fields Medallists' Lectures

3th Edition
edited by Sir Michael Atiyah, Daniel Iagolnitzer and Chitat Chongx

 

  • articleNo Access

    On the spread of ultrafine particulate matter: A mathematical model for motor vehicle emissions and their effects as an asthma trigger

    Asthma is a respiratory disease that affects the lungs, with a prevalence of 339.4 million people worldwide [G. Marks, N. Pearce, D. Strachan, I. Asher and P. Ellwood, The Global Asthma Report 2018, globalasthmareport.org (2018)]. Many factors contribute to the high prevalence of asthma, but with the rise of the industrial age, air pollutants have become one of the main Ultrafine particles (UFPs), which are a type of air pollutant that can affect asthmatics the most. These UFPs originate primarily from the combustion of motor vehicles [P. Solomon, Ultrafine particles in ambient air. EM: Air and Waste Management Association’s Magazine for Environmental Managers (2012)] and although in certain places some regulations to control their emission have been implemented they might not be enough. In this work, a mathematical model of reaction–diffusion type is constructed to study how UFPs grow and disperse in the environment and in turn how they affect an asthmatic population. Part of our focus is on the existence of traveling wave solutions and their minimum asymptotic speed of pollutant propagation cmin. Through the analysis of the model it was possible to identify the necessary threshold conditions to control the pollutant emissions and consequently reduce the asthma episodes in the population. Analytical and numerical results from this work prove how harmful the UFEs are for the asthmatic population and how they can exacerbate their asthma episodes.