World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PREDICTING STOCK RETURNS — THE INFORMATION CONTENT OF PREDICTORS ACROSS HORIZONS

    https://doi.org/10.1142/S201049521550013XCited by:1 (Source: Crossref)

    We evaluate and compare the information contents of dividend-price ratio and consumption-wealth ratio (cay) for predicting stock returns at different horizons. To do this, we conduct a canonical correlation analysis of wavelet-decomposed stock returns and a selected group of predictors. We show that predictive information is often wasted due to a weak signal problem: The highly predictive component is met with very low variation. Nevertheless, we find that cay contains valuable information about the long run and that, after allowing for structural breaks, dividend-price ratio becomes very informative about short-to-medium-horizon returns and outperforms cay in terms of in-sample R2.

    JEL Classifications: C22, C53, G12