Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    1: Introduction

      Some people think that carbon and sustainable development are not compatible. This textbook shows that carbon dioxide (CO2) from the air and bio-carbon from biomass are our best allies in the energy transition, towards greater sustainability. We pose the problem of the decarbonation (or decarbonization) of our economy by looking at ways to reduce our dependence on fossil carbon (coal, petroleum, natural gas, bitumen, carbonaceous shales, lignite, peat). The urgent goal is to curb the exponential increase in the concentration of carbon dioxide in the atmosphere and hydrosphere (Figures 1.1 and 1.2) that is directly related to our consumption of fossil carbon for our energy and materials The goal of the Paris agreement (United Nations COP 21, Dec. 12, 2015) of limiting the temperature increase to 1.5 degrees (compared to the pre-industrial era, before 1800) is becoming increasingly unattainable (Intergovermental Panel on Climate Change (IPCC), report of Aug. 6, 2021). On Aug. 9, 2021 Boris Johnson, prime minister of the United Kingdom, declared that coal needs to be consigned to history to limit global warming. CO2 has an important social cost…

    • chapterNo Access

      ATOM, MOLECULE, AND NANOCLUSTER MANIPULATIONS FOR NANOSTRUCTURE FABRICATION USING SCANNING PROBE MICROSCOPY

      Nanofabrication01 Mar 2008

      Over the last decade, scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful manipulation technique by virtue of its ability to interact with individual adsorbed nanoparticles with nanoscale precision on the surface. In this article, the principles, procedures and applications of both STM and AFM-based technologies for manipulation of atoms, molecules, and nanoclusters are reviewed with an emphasis on their ability to create a wide variety of nanostructures. In the manipulation of single atoms and molecules, the interaction among the atoms/molecules, surface, and tip are specifically discussed first. The approach for positioning the atom/molecule from and to the desired locations and precisely controlling its movement is also elaborated for each specific manipulation technique. The applications of these techniques for fabricating different nanostructures and nanosystems are then presented. In the manipulation of nanoclusters, different nanocluster-substrate pairs in different environments with their potential applications in electronics, biology, and medicine are specifically evaluated. Finally, concluding remarks are provided, where the scopes for technological improvement and future research are recommended.