Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we propose a novel ensemble gene selection method to obtain a gene subset. Then we provide a reverse construction method of gene network derived from expression profile data of the gene subset. The uncertainty coefficient based on information entropy are used to define the existence of logical relations among these genes. If the uncertainty coefficient between some genes exceeds predefined thresholds, the gene nodes will be connected by directed edges. Thus, a gene network is generated, which we define as gene logical network. This method is applied to the breast cancer data including control group and experimental group, with comparisons of the 2nd-order logic type distribution, average degree as well as average path length of the networks. It is found that these structures with different networks are quite distinct. By the comparison of the degree difference between control group and experimental group, the key genes are picked up. By defining the dynamics evolution rules of state transition based on the logical regulation among the key genes in the network, the dynamic behaviors for normal breast cells and cells with cancer of different stages are simulated numerically. Some of them are highly related to the development of breast cancer through literature inquiry. The study may provide a useful revelation to the biological mechanism in the formation and development of cancer.