Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ON OPERATING STRATEGIES OF THE FUZZY ARTMAP NEURAL NETWORK: A COMPARATIVE STUDY

    In this paper, the effectiveness of three different operating strategies applied to the Fuzzy ARTMAP (FAM) neural network in pattern classification tasks is analyzed and compared. Three types of FAM, namely average FAM, voting FAM, and ordered FAM, are formed for experimentation. In average FAM, a pool of the FAM networks is trained using random sequences of input patterns, and the performance metrics from multiple networks are averaged. In voting FAM, predictions from a number of FAM networks are combined using the majority-voting scheme to reach a final output. In ordered FAM, a pre-processing procedure known as the ordering algorithm is employed to identify a fixed sequence of input patterns for training the FAM network. Three medical data sets are employed to evaluate the performances of these three types of FAM. The results are analyzed and compared with those from other learning systems. Bootstrapping has also been used to analyze and quantify the results statistically.