Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Minimizing PAPR and Synchronization Errors in OFDM for WiMAX Using Software Defined Radio

    This paper addresses the reduction of peak-to-average power ratio (PAPR) and synchronization errors of an orthogonal frequency division multiplexing (OFDM) for Mobile-WiMAX physical layer (PHY) standard. In the process, the best achievable PAPR of 0 dB with efficient power amplification is found for the OFDM signal using phase modulation technique, which avoids the nonlinear distortion. Further, the constant modulus algorithm (CMA) and sign kurtosis maximization adaptive algorithm (SKMAA) equalizers are used in the system to reduce the synchronization errors. However, the experimental study is performed on a test platform for a practical proof of the concept. The test platform is based on the Ettus universal software radio peripheral (USRP) N210 hardware and the GNU Radio open source software. Several tests are carried out to observe the effect of equalizers on the system. The performance comparison of bit error rate/symbol error rate (BER/SER) values are tabulated for the system with and without equalization.