Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Development of Simulation-Based Approach Using Frame Models Generated From GIS Features and BIM Data for Application to City Seismic Response Analysis of Low- to Mid-Rise RC Structures in Metro Manila

    Many cities in the Philippines are situated near fault systems that can generate large magnitude of earthquakes. This paper describes the development of a city seismic response analysis approach for Metro Manila’s low- to mid-rise RC structures using frame models which are generated from GIS feature or BIM data. To create the three-dimensional (3D) models, features and structural details from BIM are used. Finite element method was used to discretize the models with mesh of line elements. Validations of generated models were conducted by comparing the results with those obtained using solid finite element model, commercial software and experimental test. The developed approach was applied to a scenario earthquake analysis wherein the causative fault is the West Valley Fault. Two cities within Metro Manila, that vary in distribution of low- and mid-rise building and site condition, were analyzed. The results of statistical analysis show that the variations in distribution of maximum interstory drift (ISD) between cities and between floor levels, are influenced by the height and floor plan area of the structures. Visualizations in both city-level and building-level reveal the areas that are critical for the considered scenario earthquake. Analysis of the computation costs shows that using frame models for response analysis of each city in Metro Manila leads to million-order degrees-of-freedom (DoF) to solve, and necessitates the implementation of data partitioning and high performance computing techniques.