Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Fully auditory Brain-computer interfaces based on the dichotic listening task (DL-BCIs) are suited for users unable to do any muscular movement, which includes gazing, exploration or coordination of their eyes looking for inputs in form of feedback, stimulation or visual support. However, one of their disadvantages, in contrast with the visual BCIs, is their lower performance that makes them not adequate in applications that require a high accuracy. To overcome this disadvantage, we employed a Bayesian approach in which the DL-BCI was modeled as a Binary phase shift keying receiver for which the accuracy can be estimated a priori as a function of the signal-to-noise ratio. The results showed the measured accuracy to match the predefined target accuracy, thus validating this model that made possible to estimate in advance the classification accuracy on a trial-by-trial basis. This constitutes a novel methodology in the design of fully auditory DL-BCIs that let us first, define the target accuracy for a specific application and second, classify when the signal-to-noise ratio guarantees that target accuracy.
Synthetic sounds, tone-beeps, vowels or syllables are typically used in the assessment of attention to auditory stimuli because they evoke a set of well-known event-related potentials, whose characteristics can be statistically contrasted. Such approach rules out the use of stimuli with non-predictable response, such as human speech. In this study we present a procedure based on the robust binary phase-shift keying (BPSK) receiver that permits the real-time detection of selective attention to human speeches in dichotic listening tasks. The goal was achieved by tagging the speeches with two barely-audible tags whose joined EEG response constitutes a reliable BPSK constellation, which can be detected by means of a BPSK receiver. The results confirmed the expected generation of the BPSK constellation by the human auditory system. Also, the bit-error rate and the information transmission rate achieved in the detection of attention fairly followed the expected curves and equations of the standard BPSK receiver. Actually, it was possible to detect attention as well as the estimation a priori of its accuracy based on the signal-to-noise ratio of the BPSK signals. This procedure, which permits the detection of the attention to human speeches, can be of interest for new potential applications, such as brain–computer interfaces, clinical assessment of the attention in real time or for entertainment.