Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    WEAK QUANTUM CONFINEMENT IN ZnO NANORODS: A ONE DIMENSIONAL POTENTIAL WELL APPROACH

    We report here the weak quantum confinement effect in zinc oxide nanorods fabricated by a simple wet chemical method at room temperature. The formation of nanorods was confirmed through X-ray diffraction measurements. The particle size was also determined from the X-ray diffraction pattern and was found to be 20 nm. The band gap was calculated from the UV-Visible spectrum and found to be 3.72 eV, which is higher as compared to the bulk ZnO. It owes its value to the quantum confinement effect. However, the large particle size indicates that the confinement is weak in nature. The photoluminescence spectrum shows a strong emission peak at 421 nm accompanied by several much weaker defect related emissions in the visible region. Using the weak confinement model, we identified the transition levels for those emissions.