Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Some people think that carbon and sustainable development are not compatible. This textbook shows that carbon dioxide (CO2) from the air and bio-carbon from biomass are our best allies in the energy transition, towards greater sustainability. We pose the problem of the decarbonation (or decarbonization) of our economy by looking at ways to reduce our dependence on fossil carbon (coal, petroleum, natural gas, bitumen, carbonaceous shales, lignite, peat). The urgent goal is to curb the exponential increase in the concentration of carbon dioxide in the atmosphere and hydrosphere (Figures 1.1 and 1.2) that is directly related to our consumption of fossil carbon for our energy and materials The goal of the Paris agreement (United Nations COP 21, Dec. 12, 2015) of limiting the temperature increase to 1.5 degrees (compared to the pre-industrial era, before 1800) is becoming increasingly unattainable (Intergovermental Panel on Climate Change (IPCC), report of Aug. 6, 2021). On Aug. 9, 2021 Boris Johnson, prime minister of the United Kingdom, declared that coal needs to be consigned to history to limit global warming. CO2 has an important social cost…
There are mines of elemental carbon such as graphite. It is the most stable form of elemental carbon at 25°C, under 1 atm (Section 3.7). A second form of pure or nearly pure elemental carbon is represented by diamonds (Section 3.12). Other forms of elemental carbon are produced by combustion or heat treatment of wood (Section 3.6), bio-polymers such as paper, cotton (cellulose), or synthetic polymers such as viscose (Section 11.10.1) and polyacrylonitrile (Section 8.2.7). Nanoparticles such as graphene (Section 3.7), fullerenes (Section 3.8), nanotubes (Section 3.9), and quantum dots of carbon (Section 3.10) are available that find biomedical applications and are used in the manufacture of nanometric objects useful for electronics, optoelectronics, photophysics, energy and the environment protection. Nanoparticles must be handled with care as they can be toxic…
Today, fossil carbon provides us with fuels (energy), polymers (packaging, insulating and building materials, household utensils, glues, coatings, textiles, 3D-printing inks, furnitures, vehicle parts, toys, electronic and medical devices, etc.) and biologically active substances (drugs (Chapter 9), flavorings, fragrances, food additives, plant protection products, etc.). In this chapter we discover the modern materials of our civilization which are very often polymers derived from oil. They are referred to as “plastics” (annual world production: 380 × 106 tons). Their production consumes 8% of the crude oil extracted (ca. 5 billion tons per year). An increasing part of the plastics originates from renewable resources (less than 10% today, see Section 11.10, bio-sourced plastics). Plastics make life easy for us, but at the underestimated cost of damage to our environment (Figure 8.1) and our health. They contaminate the hydrosphere and the agricultural soil. The atmosphere is also contaminated by microplastics…