Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Tailoring the texture of titanium thin films deposited by high-power pulsed magnetron sputtering

    Titanium (Ti) thin films with (002) or (100) texture are favored for many applications. In this paper, Ti thin films were prepared by high-power pulsed magnetron sputtering, and the texture of Ti thin films was successfully tailored by adjusting the pulse width, substrate bias and magnetic field strength. It is found that the peak power and average power of the Ti target are increased by increasing sputtering pulse width and decreasing magnetic field strength, which raise the Ti plasma flux and ion/atom ratio of Ti ions in front of the substrate simultaneously. Ti thin films with a highly (002) out-of-plane texture can be obtained with higher pulse width and lower magnetic field strength. The Ti thin films with highly (100) out-of-plane texture can be achieved with shorter pulse width, lower magnetic field strength and substrate bias.

  • articleNo Access

    Electrically-tunable magnetoresistance effect in magnetically modulated semiconductor heterostructure

    We report on a theoretical study of magnetoresistance (MR) effect in a magnetically modulated semiconductor heterostructure (MMSH) under an applied bias, which can be constructed on surface of GaAs/AlxGa1xAs heterostructure by depositing two asymmetric ferromagnetic (FM) stripes. Bias-dependent transmission and conductance are calculated numerically, on the basis of both improved transfer matrix method (ITMM) and Landauer–Büttiker conductance theory. An obvious MR effect appears because of a significant difference of transmission between parallel and antiparallel (AP) magnetization configurations. Moreover, MR ratio can be tuned by the bias. These interesting features not only provide an alternative way to manipulate MR effect, but also may lead to an electrically-controllable MR device.