Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    Dynamic deformability of sickle red blood cells in microphysiological flow

    TECHNOLOGY01 Jun 2016

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell's aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events.

  • articleNo Access

    Understanding the mechanics of the bladder through experiments and theoretical models: Where we started and where we are heading

    TECHNOLOGY01 Mar 2016

    Bladder control problems affect both men and women and range from an overactive bladder, to urinary incontinence, to bladder obstruction and cancer. These disorders affect more than 200 million people worldwide. Loss of bladder function significantly affects the quality of life, both physically and psychologically, and also has a large impact on the healthcare system, i.e., the incurring costs related to diagnosis, treatment and medical/nursing care. Improvements in diagnostic capabilities and disease management are essential to improve patient care and quality of life and reduce the economic burden associated with bladder disorders. This paper summarizes some of the key contributions to understanding the mechanics of the bladder ranging from work conducted in the 1970s through the present time with a focus on material testing and theoretical modeling. Advancements have been made in these areas and a significant contribution to these changes was related to technological improvements.