Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Automatic Face Recognition (FR) presents a challenging task in the field of pattern recognition and despite the huge research in the past several decades; it still remains an open research problem. This is primarily due to the variability in the facial images, such as non-uniform illuminations, low resolution, occlusion, and/or variation in poses. Due to its non-intrusive nature, the FR is an attractive biometric modality and has gained a lot of attention in the biometric research community. Driven by the enormous number of potential application domains, many algorithms have been proposed for the FR. This paper presents an overview of the state-of-the-art FR algorithms, focusing their performances on publicly available databases. We highlight the conditions of the image databases with regard to the recognition rate of each approach. This is useful as a quick research overview and for practitioners as well to choose an algorithm for their specified FR application. To provide a comprehensive survey, the paper divides the FR algorithms into three categories: (1) intensity-based, (2) video-based, and (3) 3D based FR algorithms. In each category, the most commonly used algorithms and their performance is reported on standard face databases and a brief critical discussion is carried out.
We propose a new cross-correlation method that can recognize independent realizations of the same type of stochastic processes and can be used as a new kind of pattern recognition tool in biometrics, sensing, forensic, security and image processing applications. The method, which we call bispectrum correlation coefficient method, makes use of the cross-correlation of the bispectra. Three kinds of cross-correlation coefficients are introduced. To demonstrate the new method, six different random telegraph signals are tested, where four of them have the same power density spectrum. It is shown that the three coefficients can map the different stochastic processes to specific sub-volumes in a cube.
Visual recognition of faces is an essential behavior of humans: we have optimal performance in everyday life and just such a performance makes us able to establish the continuity of actors in our social life and to quickly identify and categorize people. This remarkable ability justifies the general interest in face recognition of researchers belonging to different fields and specially of designers of biometrical identification systems able to recognize the features of person's faces in a background.
Due to interdisciplinary nature of this topic in this contribute we deal with face recognition through a comprehensive approach with the purpose to reproduce some features of human performance, as evidenced by studies in psychophysics and neuroscience, relevant to face recognition. This approach views face recognition as an emergent phenomenon resulting from the nonlinear interaction of a number of different features. For this reason our model of face recognition has been based on a computational system implemented through an artificial neural network.
This synergy between neuroscience and engineering efforts allowed us to implement a model that had a biological plausibility, performed the same tasks as human subjects, and gave a possible account of human face perception and recognition. In this regard the paper reports on an experimental study of performance of a SOM-based neural network in a face recognition task, with reference both to the ability to learn to discriminate different faces, and to the ability to recognize a face already encountered in training phase, when presented in a pose or with an expression differing from the one present in the training context.