Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    BIOMIMETIC DEPOSITION OF APATITE ON SURFACE CHEMICALLY MODIFIED POROUS NiTi SHAPEMEMORY ALLOY

    Porous NiTi shape memory alloy (SMA) with 48% porosity and an average pore size of 50–800 μm was synthesized by capsule-free hot isostatic pressing (CF-HIP). To enhance the surface bioactivity, the porous NiTi SMA was subjected to H2O2 and subsequent NaOH treatment. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analyses revealed that a porous sodium titanate (Na2TiO3) film had formed on the surface of the porous NiTi SMA. An apatite layer was deposited on this film after immersion in simulated body fluid at 37°C, while no apatite could be found on the surface of the untreated porous NiTi SMA. The formation of the apatite layer infers that the bioactivity of the porous NiTi SMA may be enhanced by surface chemical treatment, which is favorable for its application as bone implants.

  • articleNo Access

    EFFECT OF MICRO-STRUCTURAL GEOMETRY ON LUBRICANT INFILTRATION AND PROPERTY OF SLIPPERY LIQUID-INFUSED POROUS SURFACES

    Liquid-infused porous surfaces inspired by Nepenthes pitcher plant were fabricated on polyurethane. Five different micro-structures, including pillar (PIL), Sharklet® (SHK), continuous discrete ridge (DIR), hole (HOL) and networking (NET), were fabricated by soft lithography. Effects of micro-structural geometry on lubricant infiltration capability were investigated by infiltration the micro-structures with two lubricants of different viscosity, Krytox-103 (η: 0.131 Pas) and Krytox-105 (η:0.737Pas). The lubricant infiltration and retention capability were determined using a confocal laser scanning micro-scopy, and properties of the infused surfaces were evaluated by measuring the speed of water droplet motion at various tilting angles. The results revealed that, for the 80μm-high micro-structures, infiltration with a less viscous Krytox-103 resulted in more complete infiltration and retention, particularly for the PIL micro-structure. The infused surface exhibited a slippery behavior signified by low sliding angle and good anti-adhesion against chlorophyll fluid and milk yogurt. The lubricant retention capability was significantly reduced for the 7μm-high micro-structures due to lower aspect ratio and low capillary force. In this case, the PIL infused with a more viscous Krytox-105 provided a slippery surface.