Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    ELLAGIC ACID DIRECTED GROWTH OF Au–Pt BIMETALLIC NANOPARTICLES AND THEIR CATALYTIC APPLICATIONS

    In this work, we report the facile formation of bimetallic nanoparticles of Au–Pt in the presence of the plant polyphenol ellagic acid (EA). It was found that EA formed micro-fibrillar assemblies, which aggregated into micro-bundles under aqueous conditions. Those micro-bundles acted as templates for the growth of Au nanoparticles, as well as bimetallic Au–Pt nanoparticles biomimetically. At higher concentrations of EA, it was observed that in addition to forming fibrous micro-bundles, columnar assemblies of EA were formed in the presence of the metal nanoparticles. The formation of the assemblies was found to be concentration dependent. It appears that upon binding to metal ions and subsequent formation of the nanoparticles, morphological changes occur in the case of EA assemblies. The morphological changes observed were probed by electron microscopy. Further, the ability of the materials to degrade the toxic aromatic nitro compound 2-methoxy-4-nitroaniline was explored, where 50% degradation was observed within 15 min, indicating that such hybrid materials may have potential applications in environmental remediation.

  • articleNo Access

    Green Synthesis of Silver Nanoparticles from Fresh Leaf Extract of Centella asiatica and Their Applications

    The synthesis, characterization and application of biologically synthesized nanomaterials have become an important branch of nanotechnology. In the present study, we report the synthesis of silver nanoparticles from fresh leaf extract of Centella asiatica (LEC). UV-Vis spectrum for silver colloids contains a strong plasmon band near 425nm, which confirms the formation of nanoparticles. The experimental results show that the silver nanoparticles are formed easily in the extract at ambient temperature. The resulting silver nanoparticles (AgNPs) were in the spherical form and the average size of the nanoparticles was in the range from 3nm to 30nm. From the above silver nanoparticles, we were taken up to investigate the effects of various concentrations of AgNPs on growth, development and yield of peanut plants. The results of the present experiment showed that the optimized concentration of AgNPs of the good germination, growth and pod yield of peanut plant is 5ppm.