Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We analyze the Kim, Lee and Lee model of information erasure by black holes and find contradictions with standard physical laws. We demonstrate that the erasure model leads to arbitrarily fast information erasure; the proposed physical interpretation of information freezing at the event horizon as observed by an asymptotic observer is problematic; and information erasure, whatever the process may be, near the black hole horizon leads to contradictions with quantum mechanics if Landauer's principle is assumed. The later part of the work demonstrates the significance of the "erasure entropy". We show that the erasure entropy is the mutual information between two subsystems.
The back reactions of Hawking radiation allow nontrivial correlations between consecutive Hawking quanta, which gives a possible way of resolving the paradox of black hole information loss known as the hidden messenger method. In a recent work of Ma et al. [arXiv:1711.10704], this method is enhanced by a general derivation using small deviations of the states of Hawking quanta off canonical typicality. In this paper, we use this typicality argument to study the effects of generic back reactions on the quantum geometries described by spin network states, and discuss the viability of entropy conservation in loop quantum gravity. We find that such back reactions lead to small area deformations of quantum geometries including those of quantum black holes. This shows that the hidden-messenger method is still viable in loop quantum gravity, which is a first step towards resolving the paradox of black hole information loss in quantum gravity.
We show that quantum nonequilibrium (or deviations from the Born rule) can propagate nonlocally across space. Such phenomena are allowed in the de Broglie–Bohm pilot-wave formulation of quantum mechanics. We show that an entangled state can act as a channel whereby quantum nonequilibrium can be transferred nonlocally from one region to another without any classical interaction. This suggests a novel mechanism whereby information can escape from behind the classical event horizon of an evaporating black hole.
In this paper, we consider a version of the Hayden–Preskill thought experiment in which the message thrown into the black hole is itself a smaller black hole. We then discuss the implications of the existence of a recovery channel for this black hole message at asymptotic infinity, resulting in a sharpening of the black hole information paradox for observers who never need to approach a horizon. We suggest decoherence mechanisms as a way of resolving this sharpened paradox.