Please login to be able to save your searches and receive alerts for new content matching your search criteria.
A CFD (Computational Fluid Dynamics) model was developed to simulate flow in a membrane oxygenator. The hollow fiber bundles were treated as a porous medium. This study demonstrated that the numerical model could accurately predict the distributions of flow velocity, pressure, shear stresses, temperature, and oxygen concentration in the device. The numerical model is a powerful tool for the designing of a membrane oxygenator.
This paper describes the performance characterization of an axial blood pump that is developed in our laboratory. Using computational fluid dynamics (CFD), regions of flow separation and high shear stress were identified since they are of concern in the development of cardiac assist devices. CFD is an efficient and cost effective tool in assisting the designer to reduce the number of experimental trials needed. Preliminary CFD studies showed the existence of substantial backflow in the impeller passage. The impeller geometry was improved using CFD modeling. Regions of flow separation were eliminated while regions of scalar stress of up to 150 Pa were observed near to the impeller tip. The final prototype can deliver a flow rate of 5 L/min at a pressure head of 14 kPa when operating at a speed of 10,000 rpm. The model was fabricated using rapid prototyping techniques and performance characterization of the pump has demonstrated that the CFD prediction of the pump performance curve and the pressure developed along the impeller agrees reasonably well with experimental results.
Advances in molecular biology have produced a wide range of protein and peptide-based drugs. Equally, it is required to explore various technologies and capabilities to deliver those drugs. A unique medical device, the hand-held biolistics, is developed for powdered pharmaceuticals/biologicals transdermal delivery. The underlying principle is to accelerate micro-particles by means of a high-speed helium gas to an appropriate momentum to penetrate the outer layer of the skin to elicit desirable pharmaceutical/biological effects. The novelty of this hand-held biolistics is using the venturi effect to entrain micron-sized protein and peptide drugs into an established quasi-steady transonic jet flow and accelerate them toward the target. In this paper, computational fluid dynamics is utilized to characterize prototype biolistic system. The key features of gas dynamics and gas–particle interaction are presented. The overall capability of the biolistic delivery system is discussed and demonstrated. The statistical analyses show that the particles have achieved a mean velocity of 628 m/s as representatives of extracellular vaccine delivery applications.
Hydrodynamic cellular environment plays an important role in translating engineered tissue constructs into clinically useful grafts. However, the cellular fluid dynamic environment inside bioreactor systems is highly complex and it is normally impractical to experimentally characterize the local flow patterns at the cellular scale. Computational fluid dynamics (CFD) has been recognized as an invaluable and reliable alternative to investigate the complex relationship between hydrodynamic environments and the regeneration of engineered tissues at both the macroscopic and microscopic scales. This review describes the applications of CFD simulations to probe the hydrodynamic environment parameters (e.g., flow rate, shear stress, etc.) and the corresponding experimental validations. We highlight the use of CFD to optimize bioreactor design and scaffold architectures for improved ex-vivo hydrodynamic environments. It is envisioned that CFD could be used to customize specific hydrodynamic cellular environments to meet the unique requirements of different cell types in combination with advanced manufacturing techniques and finally facilitate the maturation of tissue-engineered constructs.
Airflow should be affected by ear, nose, etc, and aerodynamic sound could be brought when the human head and the airflow occurs at a relative speed movement. Because the drag force of the head is large, in cycling competitions and other high-speed sport the diversion hats should be worn. After the speed of airflow reaches to a certain speed, due to the strong airflow interference, the aerodynamic noise could be brought and it could greatly impact on the athletes to make action decisions. In this paper, computational fluid dynamics (CFD) method is used for solving the aerodynamic behavior of a human head under different air velocities, and the pressure on head surface and the airflow around the head are calculated. Then, the above-mentioned conditions of different aerodynamic sound are solved by the finite element/infinite element method (FEM/IFEM), the points in the canal entrance of the two ears are picked up for collecting the SPL spectral curves, and the sound distribution of the horizontal plane and the median plane are drawn. Previous studies showed that the aerodynamic noise brought by head spoiler is obvious at low frequencies, because the influence of the head, if the airflow speed is greater than a certain value, the aerodynamic noise could not only increase, but also should be substantially reduced. The results are useful for athlete diversion cap design and spatial hearing research in which the influence of the airflow should be considered.
Objectives: To investigate the influence of atherosclerotic plaque and different drug-eluting stent (DES) spacing on drug deposition in the curved artery wall. Methods: Based on the computational fluid dynamics (CFD) method, the numerical investigation on distributions of drug concentration in the artery wall was carried out considering three different interstrut distances and five values of the plaque diffusion coefficients. The results were compared with those of the model without plaque. Results: Under the same stent spacing, drug deposition weakly increased with the increasing plaque diffusion coefficient. When the same diffusion coefficient value was taken, drug deposition presented steady growth with the expansion of stent spacing. When the stent spacing was of 1-strut length or the diffusion coefficient of plaque was much smaller than the diffusion coefficient of tissue (an order of magnitude or more), the drug deposition would be evidently reduced. Conclusions: In a curved artery, the stent spacing is still an important factor in drug deposition. The diffusion coefficients of plaque have little influence on the average drug concentration, but they show a relatively obvious effect on drug distributions.
Fluid–structure interaction (FSI) simulations were carried out in a human cerebral aneurysm model with the objective of quantifying the effects of hypertension and pressure gradient on the behavior of fluid and solid mechanics. Six FSI simulations were conducted using a hyperelastic Mooney–Rivlin model. Important differences in wall shear stress (WSS), wall displacements, and effective von Mises stress are reported. The hypertension increases wall stress and displacements in the aneurysm region; however, the effects of hypertension on the hemodynamics in the aneurysm region were small. The pressure gradient affects the WSS in the aneurysm and also the displacement and wall stress on the aneurysm. Maximum wall stress with hypertension in the range of rupture strength was found.
High-pitch spiral computed tomography coronary angiography (CTCA) is able to perform a whole-heart scan within one heartbeat, resulting in high-quality images with high spatial and temporal resolution. To investigate the performance of high-quality CTCA images, an anatomic stenosis evaluation by digital subtracted angiography (DSA) was compared to a functional stenosis evaluation by CTCA-derived fraction flow reserve (FFR). A total of 54 arterial segments with stenosis were collected from 23 patients, and three-dimensional (3D) geometrical models were reconstructed. The computational fluid dynamics (CFDs) analysis was used to calculate the pressure distributions and FFR values. The correlation between anatomic and functional evaluation factors was assessed with either the ratio of anatomic reduction or CTCA-derived FFR values at the corresponding anatomic locations. Pearson correlation analysis was performed, and a significant correlation was found relating to the diameter (r=0.736) and the cross-sectional area (r=0.673). A significant correlation was also found in the functional evaluation relating to the diameter (r=−0.740) and the cross-sectional area (r=−0.701). High-quality CT images greatly reduce the time needed for geometric reconstruction. Significant advances in the accuracy of the reconstruction have resulted in more accurate CFD analysis, which can help to improve clinical diagnoses. The results of this study show that the CFD method can be a feasible tool for the clinic diagnosis of stenosis and for determining whether a patient requires percutaneous coronary intervention (PCI).
Human nasal airflow in a healthy and partially blocked cavities is investigated using computational and experimental means. While previous studies focused on the flow inside the nasal cavity, this study also looks at the external air stream coming out of the nostrils. The aim is to investigate the airflow subject to partial blocking in the nasal cavity and assess the potential of using a flow visualization method to identify abnormal nasal geometry. Two methods of study are used: Computational Fluid Dynamics (CFD) and experiment based on Particle Image Velocimetry (PIV). Nasal cavity geometry is reconstructed from CT scans. The flow visualization Schileren method is also demonstrated. The computational results agree well with the previous results in terms of Nasal Resistance (NR) and character of the internal flow. Good agreement is also found in the external aerodynamics during expiration between the computational and experimental results. Several generic partial blockages are investigated to show changes in NR, turbulence energy and the air stream leaving the nostrils during expiration. Anterior blockages are found to have more profound effects on all these three aspects, but all show effects on the external air stream. A possible universal angle for the external air stream emitted by a healthy nasal cavity is discussed.
CFD simulations were performed for 60 human cerebral aneurysms (30 previously ruptured and 30 previously unruptured) to study the behavior of the time-averaged wall shear stress (TAWSS) with respect to the aspect ratio (AR), implementing a set of low, normal, and high-pressure differences between the inlet and the outlets of each artery. It is well known that there exists a direct relationship between TAWSS and the rupture. In this investigation, we presented an important result because the condition of the pressure among the branches and the AR may be measured in any patient, then a slope may be associated, and finally a TAWSS may be estimated. We found that when the pressure difference increased, the absolute slopes between TAWSS and AR increased as well. Also, the magnitude of the slope in the previously unruptured aneurysms was 4.7 times the slope in the previously ruptured aneurysms. On the other hand, TAWSS was higher in the previously unruptured aneurysm than previously ruptured aneurysms due to the unruptured aneurysms that have a smaller surface area. Furthermore, we analyzed the relationship between TAWSS and other geometric parameters of the aneurysm, such as bottleneck and non-sphericity index; however, no correlation was found for either cases.
In this paper, a numerical estimation of wall shear stress (WSS) in a compliant Thoracic Aorta (TA) with aneurysm is modeled and the hemodynamic pattern is studied using Computational Fluid Dynamics (CFD). Thoracic Aortic Aneurysm (TAA) is an excessively localized enlargement of TA caused by weakness in the arterial wall and it can rupture the inner wall intima and continue on to the outer wall adventitia. WSS is a tangential force exerted by blood flow on the vessel wall, and its estimation is clinically very important because any change in WSS is considered as a vital cue in the onset of aneurysm. In this work, a three-dimensional (3D) model of a TAA reconstructed from computed tomography (CT) images comprising of 600 slices with 1-mm resolution from neck to hip is considered and patient-specific simulations have been carried out in compliant TA under rest and exercise conditions. The findings show that the change in wall geometry was marginal due to variation in pressure forces inside and is not the primary source for expansion of an aneurysm. It was inferred that expansion was rather due to thinning of the wall, owing to damage caused to the inner lining of the tissues, at regions of high WSS. It was found that the geometry extraction is important as any change in length causes a corresponding variation in mass flow through it. Although mass conservation is maintained irrespective of the length, it does affect the rate of flow due to shifting in the pressure boundary conditions with the length as it varies the pressure inside the system. Modeling of the geometry is very important as the change in mass flow will affect the outlet velocity and strength of vortices. Surprisingly, the split-up of flow is consistent but the geometric change in the model has no effect on WSS values and flow pattern. The results of this study provide important information such as blood flow pattern and pressure drops in the compliant TA on WSS estimations with TAA diseases.
Motivated by recent developments in bio-inspired medical engineering micro-scale pumps, in this paper, a three-dimensional sequential simulation of a peristaltic micro-pump is described to provide deeper insight into the hydromechanics of laminar, viscous flow in peristaltic propulsion. The Carreau and power-law models are employed for non-Newtonian behavior. The commercial software package ANSYS Fluent is utilized to conduct a numerical simulation of laminar peristaltic pump fluid dynamics, based on the finite volume method and steady space laminar solver. Details are provided for the geometric pump design (conducted with AUTOCAD), pre-processing (meshing) and necessary boundary conditions to simulate the peristaltic flow within the pump. Extensive visualization of velocity, pressure and vorticity contours is included. The present simulations provide a benchmark for future comparison with experimental studies and indeed more advanced numerical simulations with alternative non-Newtonian models. Applications of the study include biomimetic blood flow pumps, blood dialysis machines, micro-scale infusion pumps, etc.
In this study, a realistic respiratory airway model extending from oral to the end of the trachea including all the key details of the passage was produced. A series of CT scan images were used to generate the topological data of airway cross-sections that were used to generate the computational model, as well as the three-dimensional (3D) printed model of the passage for experimental study. The airflow velocity field and pressure drop in the airway for different breathing rates of 5, 7.5, 10, and 12.5L/min were investigated numerically (by laminar and transition models) and experimentally. The velocity distributions, pressure variation, and streamlines along the oral–trachea airway model were studied. The maximum pressure drop was shown to occur in the narrowest part of the larynx region. It was also concluded that the laryngeal jet could significantly influence the airway flow patterns in the trachea. A comparison between the numerical results and experimental data showed that the transition k–kl–ω model can give better predictions of pressure losses, especially for flow rates higher than 10L/min. The simulation results for the velocity profiles in the trachea were also compared with the available particle image velocimetry (PIV) data and earlier simulations. Despite inter-personal variability and difference in the flow regime, the qualitative agreement was found.
The numerical simulations of the flow in nasal airways were performed for two different clinical cases. The results comprised the distributions of scalars at five different sections and included contours of pressure, velocity magnitude, turbulent kinetic energy and vorticity magnitude. Simulations showed the air branching occurring at the inferior meatus is unaffected by the variations in the volumetric flow rate or the changes in the flow regime through the olfactory cleft. However, the contractions and the following rapid change in the cross-section of the nasopharynx preclude the upward penetration of the vacuum field set by the lungs during the inhalation process. As a result, considerably low velocities and significant cross-sectional nonuniformities are observed, which lead to the appearances of the secondary flow structures and strong unsteadiness. Increased interactions between the airflow and the walls of the nasal cavity resulted in an increase in the vorticity on the right middle meatus and upper inferior meatus. The vorticity was also very high in the nostrils, where the flow was not fully developed.
After introduction on a new multislice computed tomography (MSCT) scanner, it has become possible to produce high-speed CT angiography (CTA) that selected preferred method for imaging in emergent vascular conditions. On the other hand, the imaging of blood vessels is often referred to as magnetic resonance angiography (MRA). Both of angiography offers the good quality of three-dimensional information of the vessels. In this study, patient specific model were reconstructed using multi-slice computed tomography (CT) and magnetic resonance imaging (MRI). The optimal transit time from intravenous injection to enhancement cardiovascular system was determined using a contrast bolus tracking technique with CT examination and phase contrast magnetic resonance angiography (PC-MRA). The purpose of this study was to describe a novel blood flow visualization and analysis in the human cardiovascular system in more detail by constructing actual three-dimensional (3D) flow and simulated model using computational flow dynamics (CFD) methods. CFD streamlines were displayed using a special illumination technique with blood pressure display, which gives a much better spatial understanding of the field's structure than ordinary constant-colored lines. Real vector display using PC-MRA was also expressed to compare with the CFD simulation. On conclusion, patient specific approach using actual blood flow with PC-MRA and CFD were effective to estimate blood flow state of the cardiovascular system.
Atherosclerotic plaque formation has been linked to haemodynamic risk factors, such as low and oscillating wall shear stresses (WSS). Experimental and numerical methods have been developed to investigate the mechanisms involved. Computational fluid dynamics (CFD) methods have the advantages of low cost and easily manageable numerical results. In order to obtain physiologically realistic results, CFD can be linked with medical imaging methods, which allow the extraction of in vivo vascular geometry and flow data to be used as input for haemodynamic simulations. Most of the image-based CFD approaches have been based on MRI, which has the disadvantages of relatively high cost and limited availability. Hence, a novel technique based on 3D ultrasound was developed with the advantages of low cost, fast acquisition and high spatial resolution. A methodology was developed to extract geometric information from the ultrasound images, reconstruct the surfaces and generate computational grids for flow simulations of the human carotid artery bifurcation. Additionally, a scheme was devised to utilize Doppler flow information for CFD boundary conditions. Accuracy and reproducibility of the combined imaging and modeling approach were evaluated in vitro and in vivo and the developed protocol was applied to normal subjects. The main conclusion of this work is the feasibility of 3D and Doppler ultrasound based CFD simulations for clinical applications. However, there are several limitations when applying this methodology in carotid bifurcations, i.e. the location of the carotid bulb relative to the jaw bone, which obscures the ultrasound path when the bifurcation is high in the neck. Future work should focus on minimizing the limitations and improve automation and reliability of image processing and reconstruction.
This paper presents an innovative design concept for a biomimetic dolphin-like underwater glider. As an excellent combination, it offers the advantages of both robotic dolphins and underwater gliders to realize high-maneuverability, high-speed and long-distance motions. As the first step, a skilled and simple dolphin-like prototype with only gliding capability is developed. The hydrodynamic analysis in the glider using Computational Fluid Dynamics (CFD) method is executed to explore the key hydrodynamic coefficients of dolphin-like glider including lift, drag and pitching moment, and also to analyze the dynamic and static pressure distribution. Finally, experimental results have shown that the dolphin-like glider could successfully glide depending on the pitching torques only from buoyancy-driven system and controllable fins without traditional internal movable masses.