Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    SPH MODELING OF LAVA FLOWS WITH GPU IMPLEMENTATION

    We describe the implementation of the Smoothed Particle Hydrodynamics (SPH) method on graphical processing units (GPU) using the Compute Unified Device Architecture (CUDA) developed by NVIDIA. The entire algorithm is executed on the GPU, fully exploiting its computational power. The code vfaces all three main components of an SPH simulation: neighbor list constructions, force computation, integration of the equation of motion. The simulation speed achieved is one to two orders of magnitude higher than the equivalent CPU code. Applications are shown for simulating the paths of lava flows during volcano eruptions. Both static problems with purely thermal effects (such as lava lake solidification) and dynamic problems with a complete lava flow were simulated.