Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Molecules such as water, proteins and lipids that are contained in biological tissue absorb mid-infrared (MIR) light, which allows such light to be used in laser surgical treatment. Esters, amides and water exhibit strong absorption bands in the 5–7 μm wavelength range, but at present there are no lasers in clinical use that can emit in this range. Therefore, the present study focused on the quantum cascade laser (QCL), which is a new type of semiconductor laser that can emit at MIR wavelengths and has recently achieved high output power. A high-power QCL with a peak wavelength of 5.7 μm was evaluated for use as a laser scalpel for ablating biological soft tissue. The interaction of the laser beam with chicken breast tissue was compared to a conventional CO2 laser, based on surface and cross-sectional images. The QCL was found to have sufficient power to ablate soft tissue, and its coagulation, carbonization and ablation effects were similar to those for the CO2 laser. The QCL also induced comparable photothermal effects because it acted as a pseudo-continuous wave laser due to its low peak power. A QCL can therefore be used as an effective laser scalpel, and also offers the possibility of less invasive treatment by targeting specific absorption bands in the MIR region.
A quantitative analysis method of CO2 laser treatments promotes laser treatment performance and rapid clinical application of novel treatment devices. The in silico clinical trial approach, which is based on computational simulation of light-tissue interactions using the mathematical model, can provide quantitative data. Although several simulation methods of laser tissue vaporization with CO2 laser treatments have been proposed, validations of the CO2 laser wavelength have been insufficient. In this study, we demonstrated a tissue vaporization simulation using a CO2 laser and performed the experimental validation using a hydrogel phantom with constant physical parameters to evaluate the simulation accuracy of the vaporization process. The laser tissue vaporization simulation consists of the calculation of light transport, photothermal conversion, thermal diffusion, and phase change in the tissue. The vaporization width, depth, and area with CO2 laser irradiation to a tissue model were simulated. The simulated results differed from the actual vaporization width and depth by approximately 20% and 30%, respectively, because of the solubilization of the hydrogel phantom. Alternatively, the simulation vaporization area for all light irradiation parameters, which is related to the vaporization amount, agreed well with the actual vaporization values. These results suggest that the computational simulation can be used to evaluate the amount of tissue vaporization in the safety and effectiveness analysis of CO2 laser treatments.