Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Cancers typically are both highly dangerous and common. Among these, lung cancer has one of the lowest survival rates compared to other cancers. CT scans can reveal dense masses of different shapes and sizes; in the lungs, these are called lung nodules. This study applied a computer-aided diagnosis (CAD) system to detect candidate nodules — and diagnose it either solitary or juxtapleural — with equivalent diameters, ranging from 7.78mm to 22.48mm in a 2D CT slice. Pre-processing and segmentation is a very important step to segment and enhance the CT image. A segmentation and enhancement algorithm is achieved using bilateral filtering, Thresholding the gray-level transformation function, Bounding box and maximum intensity projection. Border artifacts are removed by clearing the lung border, erosion, dilation and superimposing. Feature extraction is done by extracting 20 gray-level co-occurrence matrix features from four directions: 0∘, 45∘, 90∘ and 135∘ and one distance of separation (d=1 pixel). In the classification step, two classifiers are proposed to classify two types of nodules based on their locations: as juxtapleural or solitary nodules. The two classifiers are a deep learning convolutional neural network (CNN) and the K-nearest neighbor (KNN) algorithm. Random oversampling and 10-fold cross-validation are used to improve the results. In our CAD system, the highest accuracy and sensitivity rates achieved by the CNN were 96% and 95%, respectively, for solitary nodule detection. The highest accuracy and sensitivity rates achieved by the KNN model were 93.8% and 96.7%, respectively, and K was set to 1 to detect juxtapleural nodules.
Image de-noising is an essential tool for removing unwanted signals from an image. In Computed Tomography (CT) images, the image quality is degraded by the absorption of X-rays and quantum noise, which is generated due to the excitement of X-ray photons. Removal of noise and preservation of information in the CT images becomes a challenge for an imaging algorithm design. During the algorithm design selection of dataset is an important aspect for deducing results. The dataset used in this research comprises of 60 CT scan images of liver cancer archived from the arterial contrast enhanced phase. In this phase the cancer cells appear more intense as compared to the healthy liver tissue due to the absorption of contrast enhancing reagent. The experimentation for appropriate noise removal filter selection is done by testing the images using Mean, Median and Weiner Filters. The filter selected should give an image output which has minimal randomness, sharper boundaries and no blur. The de-noised image will provide a better visibility of the disease to the radiologist and physician. The performance parameters used for the assessment of various filters used in the study include visual assessment, entropy and signal to noise ratio (SNR) of the images. Median filter gives an accuracy of 96%, mean filter is 76.2% accurate with respect to original information and Weiner filters has an accuracy of 79.7%.