Image de-noising is an essential tool for removing unwanted signals from an image. In Computed Tomography (CT) images, the image quality is degraded by the absorption of X-rays and quantum noise, which is generated due to the excitement of X-ray photons. Removal of noise and preservation of information in the CT images becomes a challenge for an imaging algorithm design. During the algorithm design selection of dataset is an important aspect for deducing results. The dataset used in this research comprises of 60 CT scan images of liver cancer archived from the arterial contrast enhanced phase. In this phase the cancer cells appear more intense as compared to the healthy liver tissue due to the absorption of contrast enhancing reagent. The experimentation for appropriate noise removal filter selection is done by testing the images using Mean, Median and Weiner Filters. The filter selected should give an image output which has minimal randomness, sharper boundaries and no blur. The de-noised image will provide a better visibility of the disease to the radiologist and physician. The performance parameters used for the assessment of various filters used in the study include visual assessment, entropy and signal to noise ratio (SNR) of the images. Median filter gives an accuracy of 96%, mean filter is 76.2% accurate with respect to original information and Weiner filters has an accuracy of 79.7%.