Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Low-Voltage Circuit Breakers Based on WBG Solid-State Devices

    Conventional circuit breakers suffer from two main deficiencies: they are slow to operate and develop an electrical arc. These may be overcome by using solid-state switches which in turn introduce other problems, most significantly power dissipated while in the on-state. Nevertheless, a number of solid-state devices are candidates for implementation as low-voltage circuit breakers and there are several options based on the semiconductor material that may function as high-power switches. This paper presents a unique, extensive and systematic evaluation of these options. Voltage-controlled devices are selected due to the simplicity of the controlling circuit and their resilience to dv/dt-induced switching. Properties of fully solid-state circuit breakers are established and systematic comparisons are made among switches built of silicon and other wide bandgap (WBG) devices such as SiC MOS and GaN HEMT transistors. Using SPICE simulation it is shown that solid-state circuit breakers (SSCBs) based on WBG devices exhibit superior characteristics compared with silicon devices, with faster switching and higher voltage and current ratings. Hybrid circuit breakers, combining both conventional and solid-state switches, are discussed too and a new design circuit is simulated and compared to both conventional and fully solid-state designs.