Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (abbreviated as BNT) films were deposited on 0.2 mm thick pure titanium(Ti) substrates by a hydrothermal method. Scratch tests and Vickers indentation tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Some of Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition with a view of investigating the effects of substrate surface pretreatments on the adhesion of BNT films. In the scratch test, the critical force was determined from the variations of the tangential force and the acoustic emission (AE) signals with the normal force. The scratch test results revealed that the chemical polish pretreatment effectively improved the adhesion of BNT films. In addition, the critical substrate strain inducing the adhesion failure of BNT films has been investigated by the Vickers indentation test combined with finite element analysis (FEM).
In this paper, the surface damage mechanism of silicon carbide lapping process was studied. A theoretic model between the depth of subsurface damage and surface scratch of silicon carbide substrate double-side lapping has been built. An experiment of two-sided lapping combining VK-X100/X200 shape measurement laser microscopy system with HF mild chemical etching experiment on SiC substrate was processed to obtain the distribution of surface scratch and subsurface damage layer with depth. The study shows that the thickness of subsurface damage layer decreases as the depth increases, which centrally distributes in the depth of 0–15.6 μm from outer fragmentation and scratch damage layer, which accounted for about 98.6%. The result can help us to optimize processing parameters of silicon carbide substrate double-side lapping to control the depth of subsurface damage layer.