BST ceramics with doping of 1, 3, and 5 wt.% ZnBO were prepared by the conventional mixed oxide method and sintered at 1100°. X-ray diffraction analyses were carried out to verify the structural properties. 1, 3, and 5 wt.% ZnBO doped BST ceramics were crystallized with weak tetragonal structure at 1100°C. The grain growth behavior and shapes were investigated by scanning electron microscopy images. The electrical properties of 1, 3, and 5 wt.% ZnBO doped BST ceramics were investigated by impedance spectroscopy at the different temperatures (350, 375, and 400°C). Impedance spectroscopy data presented in Nyquist plot show the existence of both grain and grain boundary effects in all specimens. 1, 3, and 5 wt.% ZnBO doped BST ceramics showed negative temperature coefficient of resistance (NTCR). Also, the capacitances and resistances of grains and grain boundaries for 1, 3, and 5 wt.% doped BST ceramics were simulated through equivalent circuit with the parallelly connected capacitors and resistors. The capacitance and resistance were decreased when temperature and ZnBO dopants were increased.