Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • chapterNo Access

    Chapter 8: Effect size of carbon micro-nanoparticles on cyclic stability and thermal performance of Na2SO4·10H2O–Na2HPO4·12H2O phase change materials

    In this paper, carbon particles with micro- and nano-particle size were synthesized through a hydrothermal reaction of glucose, namely C-1(123.1 nm), C-2(229.2 nm), C-3(335.1 nm), C-4(456.2 nm) and C-5(534.0 nm) with distinct sizes. We utilized five size carbon particles as individual fillers into the EHS matrix materials to prepare composite eutectic phase change materials (C/EHS PCMs) by melt blending technique. The impact of carbon particle size on the dispersion stability and thermal properties of Na2SO4·10H2O–Na2HPO4·12H2O (EHS) phase change materials was investigated. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis were done to analyze the diameters of carbon particles. The cryogenic-scanning electron microscopy (Cryo-SEM) analysis indicated that the carbon particles resulted in modification in the morphology of the EHS. The results of in situ X-ray diffraction (XRD) and Fourier-transformed infrared (FTIR) analysis showed only simple physical mixing between carbon particles and EHS. It is shown that adding 0.2 wt.% C-2 can decrease the supercooling degree of EHS to 1.5°C. The cyclic stability of C/EHS varies significantly depending on the size of carbon particles. The thermal conductivity of EHS increased by 42.1%, 39.9%, 14.4%, 19.5%, and 18.8% with the addition of C-1, C-2, C-3, C-4, and C-5, respectively, at a mass fraction of 0.2%. The results of differential scanning calorimetry reveal that the incorporation of C-1, C-2, C-3, and C-4 into EHS leads to an enhancement of latent heat. The latent heat capacity of EHS with 0.2 wt.% C-2 is 243.4 J·g−1, and after undergoing 500 cycles of solid-liquid phase transition, the latent heat remained above 200 J·g−1. Through the comprehensive analysis, the C-2/EHS composite phase change material holds significant potential for advancing building insulation and solar energy storage technologies.