Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Induction of Apoptosis in HL-60 Cells Treated with Medicinal Herbs

    In order to develop a new apoptosis inducer, we screened 22 crude drugs for their apoptosis-inducing activity. It was found that Glycyrrhiza uralensis, Cynomorium songaricum, Eucommia ulmoides, Phellodendron amurense, Cinnamomum cassia and Paeonia lactiflora induced the death of HL-60 cells. To investigate the mechanism of apoptosis induced by these six crude drugs, the mitochondrial transmembrane potential and the activity of caspase-3 were measured. Reduced mitochondrial transmembrane potentials within 12 hours after the administration of Glycyrrhiza uralensis, Cynomorium songaricum, Phellodendron amurense and Paeonia lactiflora, and within 24 hours after the administration of Eucommia ulmoides and Cinnamomum cassia were observed. All of the six apoptosis-inducing crude drugs increased caspase-3 activity within 12–36 hours after administration. After further examining the apoptosis-inducing activity of berberine, palmatine, panelofuroline and glycyrrhizin, which were the ingredients obtained from Phellodendron amurense, Glycyrrhiza uralensis and Paeonia lactiflora, it was found that only berberine could induce apoptosis. From these results, it was concluded that the apoptosis induced by the six crude drugs (Glycyrrhiza uralensis, Cynomorium songaricum, Eucommia ulmoides, Phellodendron amurense, Cinnamomum cassia and Paeonia lactiflora) occurred via the mitochondrial route and that the apoptosis-conducting mechanism acted through a cascade involving caspase-3.

  • articleNo Access

    Yuk-Hap-Tang Induces Apoptosis by Intervening Mn-SOD in Human Cervical Carcinoma HeLa Cells

    Yuk-Hap-Tang (YHT) induces cell death in human cervical carcinoma HeLa cells. Caspase-3, -6 and -9 were markedly activated in HeLa cells treated with YHT. The preferred substrate for caspase-3 cysteine protease, PARP, was cleaved to its 85-kDa cleavage product. YHT increased the amount of the anti-apoptotic protein, Bcl-2, and the pro-apoptotic protein, Bax. Although p53 has been reported to accumulate in cancer cells in response to anticancer agents, the p53 expression level was not changed in HeLa cells treated with YHT. Manganese (Mn)-TBAP, a mitochondria-specific SOD mimetic agent and NAC/GSH (N-acetyl cysteine/reduced glutathione) reduced the YHT-induced cytotoxicity and decreased the number of the YHT-induced apoptotic cells. Furthermore, YHT reduced the expression of Mn-SOD protein and its activity in HeLa cells. The data demonstrate that YHT induces the apoptosis of human cervical carcinoma HeLa cells by intervening Mn-SOD.

  • articleNo Access

    Platycodon grandiflorum Induces Apoptosis in SKOV3 Human Ovarian Cancer Cells Through Mitochondrial-Dependent Pathway

    Platycodon grandiflorum (Jacq.) A. DC., a Chinese food and medicine, has been used as expectorant traditionally. The present study aimed to investigate the effect of Platycodon grandiflorum extract (PGE) on SKOV3 ovarian cancer cells. 3-(4,5- dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to monitor cell numbers, Annexin-V/propidium iodide (PI) staining, RT-PCR and Western blot were used to examine cell apoptosis, caspases activation. Bcl-2 and Bax expressions and mitochondrial cytochrome c release. Our result showed that PGE-induced apoptosis was associated with activation of caspase-3, -8 and -9, down-regulation of Bcl-2, up-regulation of Bax and release of mitochondrial cytochrome c to cytosol. The data indicate that PGE may have anti-tumor effect mainly via caspase-3 and caspase-9 dependent apoptotic pathway.

  • articleNo Access

    Reversal Effect of Stephania Tetrandra-Containing Chinese Herb Formula SENL on Multidrug Resistance in Lung Cancer Cell Line SW1573/2R120

    This research is aimed on reversing multidrug resistance (MDR) of chemotherapy in lung cancer. According to our previous research, chemotherapeutic drugs resistance in lung cancer is mainly due to high expression of multidrug resistance-associated protein (MRP) gene and activation of caspases. The effect of stephania tetrandra-containing Chinese herbal formula, namely Supplement Energy and Nourish Lung (SENL), is effective in enhancing efficacy and reducing toxicity of chemotherapy in lung cancer. However, the underlying mechnism is largely unknown. To understand whether and how SENL herbs function on multidrug-resistance lung cancer cells, we treated a multidrug resistance lung cancer cell line, SW1573/2R120 with SENL herbs alone or together with a chemotherapeutic drug, Adriamycin (ADM). We observed that SENL herbs had a significant synergistic effect with ADM in inhibiting the growth of SW1573/2R120 cells. SENL alone and particularly together with ADM could significantly increase cell apoptotic death via mitochondria- and caspase-dependent pathway. Furthermore, we showed that SENL herbs could reverse drug resistance of lung cancer cells by decreasing MRP expression and increasing accumulation of intracellular ADM, which in turn increase the sensitivity of cancer cells to ADM. Taken together, the mechanism underlying reversal effect of drug resistance by SENL treatment was reported here and further systematical investigation on SENL herbs may lead to solve drug resistance in lung cancer chemotherapy.

  • articleNo Access

    Arsenic Trioxide Induces Apoptosis in Uveal Melanoma Cells Through the Mitochondrial Pathway

    Uveal melanoma, the most common primary intraocular malignancy in adults, is highly resistant to most chemotherapeutic drugs. Arsenic trioxide (ATO) is known to inhibit ocular melanoma cell growth. However, the effects of ATO on human uveal melanoma cells are poorly understood. Therefore, this study evaluated the mechanisms of ATO and its inhibiting effects on a human uveal melanoma cell line (SP6.5). An MTT assay indicated that, compared to human fibroblasts, ATO had a stronger inhibiting effect on SP6.5 cell proliferation in a dose- and time-dependent manner. The apoptosis ratio in SP6.5 cells, which was indicated by cell DNA fragmentation, was 4.1- to 7.7-fold higher after ATO-treatment. The ATO treatment substantially increased the activities of caspase-3 and caspase-9, but not of caspase-8. These findings were consistent with the protein expression observed by Western blots. ATO also significantly enhanced expression of Bax and cytochrome c proteins but suppressed those of Bcl-2. Therefore, ATO-induced apoptosis in uveal melanoma cells occurs mainly through the mitochondrial pathway rather than through the death receptor pathway. This report is the first to evaluate the complete mitochondria-dependent apoptotic pathway of ATO in uveal melanoma cells. These results can be used to improve the clinical effectiveness of ATO treatment for uveal melanoma.

  • articleNo Access

    G1 Arrest and Caspase-Mediated Apoptosis in HL-60 Cells by Dichloromethane Extract of Centrosema pubescens

    Cell division and apoptosis are two crucial components of tumor biology and the importance of increased cell proliferation and reduced cell death have made them valid therapeutic targets. The plant kingdom is a relatively underexploited cache of novel drugs, and crude extracts of plants are known for their synergistic activity. The present study assessed the anti-proliferative activity of the medicinal plant Centrosema pubescens Benth. Centrosema pubescens dichloromethane extract (CPDE) inhibited the proliferation of HL-60 (promyelocytic acute leukaemia) cells with an IC50 value of 5 μg/ml. Further studies also showed that CPDE induces growth arrest at the G1 phase and specifically down-regulates the expressions of cyclin E and CDK2 and up-regulates p27(CKI) levels. These events apparently lead to the induction of apoptosis, which was demonstrated qualitatively by a DNA fragmentation assay and propidium iodide staining. Quantitative assessment of the effective arrest of the cell cycle and of apoptosis was confirmed by flow cytometry. CPDE exhibited negligible cytotoxicity even at the highest dose tested (100 μg/ml) in both normal peripheral blood mononuclear cells and in an in vitro model (HL-60). Our results strongly suggest that CPDE arrests the cell cycle at the G1 phase and triggers apoptosis by caspase activation.

  • articleNo Access

    In Vitro Synergistic Cytotoxic Effect of Triptolide Combined with Hydroxycamptothecin on Pancreatic Cancer Cells

    Pancreatic cancer is a devastating disease characterized by low sensitivity to conventional chemotherapeutic treatment that has a poor prognosis. Therefore, novel effective chemotherapeutic regimens need to be developed. In this study, we analyzed the combined cytotoxic effect of triptolide and hydroxycamptothecin (HCPT) on pancreatic cancer cell line PANC-1 by using 3-(4.5-dimethylthiazol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) and fluorescence- activated cell sorting (FACS) assays. Our results showed that the sensitivity of a combined therapy using triptolide and HCPT was higher than that of triptolide or HCPT alone and that activation of caspase-9/caspase-3 and inhibition of nuclear factor-kappaB (NF-κB) signaling pathway may contribute to the synergistic cytotoxic effect of this combination therapy. Therefore, our observations provided evidence supporting the clinical applications of the combination chemotherapy using triptolide and HCPT for treating pancreatic cancer.

  • articleNo Access

    Hispolon from Phellinus linteus Induces G0/G1 Cell Cycle Arrest and Apoptosis in NB4 Human Leukaemia Cells

    Hispolon (a phenolic compound isolated from Phellinus linteus) has been shown to possess strong antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. In this study, we investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma NB4 cells using the MTT assay, DNA fragmentation, DAPI (4, 6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analysis. Hispolon inhibited the cellular growth of NB4 cells in a dose-dependent manner through the induction of cell cycle arrest at G0/G1 phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Exposure of NB4 cells to hispolon-induced apoptosis-related protein expressions, such as the cleavage form of caspase 3, caspase 8, caspase 9, poly (ADP ribose) polymerase, and the proapoptotic Bax protein. Western blot analysis showed that the protein levels of extrinsic apoptotic proteins (Fas and FasL), intrinsic related proteins (cytochrome c), and the ratio of Bax/Bcl-2 were increased in NB4 cells after hispolon treatment. Hispolon-induced G0/G1-phase arrest was associated with a marked decrease in the protein expression of p53, cyclins D1, and cyclins E, and cyclin-dependent kinases (CDKs) 2, and 4, with concomitant induction of p21waf1/Cip1 and p27Kip1. We conclude that hispolon induces both of extrinsic and intrinsic apoptotic pathways in NB4 human leukemia cells in vitro.

  • articleNo Access

    Scutellariae radix Induces Apoptosis in Chemoresistant SCC-25 Human Tongue Squamous Carcinoma Cells

    Scutellariae radix is one of the most widely used anticancer herbal medicines in several Asian countries, including Korea, Japan, and China. Squamous cell carcinoma (SCC) is one of the most common head and neck carcinomas, which is highly invasive and metastatic, and can potentially develop chemoresistance. Therefore, new effective treatment methods are urgently needed. We determined the effects of Scutellariae radix on SCC-25 cells using the WST-1 assay, F-actin staining, flow cytometry analysis, immunofluorescence staining, and western blot analysis. Scutellariae radix treatment inhibited SCC-25 cell growth in a dose- and time-dependent manner, but it did not inhibit HaCaT (human keratinocyte) cell growth. Changes in cell morphology and disruption of filamentous (F)-actin organization were observed. Scutellariae radix-induced apoptosis as indicated by the translocation of cytochrome c and apoptosis-inducing factor (AIF) into the nucleus and cytosol. Scutellariae radix-induced an increase in cells with sub-G1 DNA content, and increased Bax, cleaved caspase-3, caspase-7, caspase-9, DNA fragmentation factor 45 (DFF 45), and poly(ADP-ribose) polymerase-1 (PARP-1) expression levels. Furthermore, increased expression of phosphorylated mitogen-activated protein kinase (MAPK)-related proteins was detected. The antitumor effect of Scutellariae radix was due to decreased cell proliferation, changes in cell morphology, and the activation of caspase and MAPK pathways. Taken together, the findings of this study highlight the anticancer activity of Scutellariae radix in chemoresistant SCC-25 oral squamous carcinoma cells.

  • articleNo Access

    Comparison of Immunomodulatory and Anticancer Activities in Different Strains of Tremella fuciformis Berk

    Tremella fuciformis Berk (TF) is a common edible and medicinal mushroom, and has long been used in food and in Chinese medicine. It possesses anticancer, anti-inflammation, anti-oxidative, and neuroprotective abilities. Since their cultivation is a problem, TFs in Taiwan are primarily imported from China, which has a problem with pesticide residues. Thus, the question of whether the Taiwan cultivated TFs, T1, and T6 showed similar or even better results than TFs from China (CH) was assessed in the present study. The results of the physicochemical tests of these TFs showed that T1 extracted by hot water (T1H) has the highest concentration of polysaccharide; meanwhile, T6 extracted by cold water (T6C) showed the highest amount of protein. Regarding the immune modulatory effects of these TFs, hot water extracts of these TFs augmented significantly the inducible nitric oxide synthetase (iNOS), interleukin (IL)-6, and tumor necrosis factor (TNF)-α mRNA expression than those of cold water extracts. On the other hand, the cold water extracts of TFs, especially of T1C, obviously suppressed cancer cell survival better than those of hot water extracts. Interestingly, we found that hot water extracts of TFs may augment necrotic cell death, whereas, cold water extracts of TFs induce apoptosis. Furthermore, we also showed that these TFs activate caspase-3 cleavage, up regulate the Bax/Bcl-2 ratio, and decrease MMP-9 expressions in PC-3 cells. Taken together, our results indicated that T1 and T6 strains of TFs showed the similar immune modulatory and anticancer abilities were better than the CH strain of TFs.

  • articleNo Access

    Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure–Activity Relationships

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5min to 15min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an O-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.