Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Bi4Ti3O12/CdS Nanocomposites Enhance the Photocatalytic Degradation Performance

    Nano01 Jan 2022

    Semiconductor materials used in the field of photocatalysis have been attracting much attention. Due to the advantages of green, pollution-free and sustainable development of solar energy, it is an ideal strategy to explore excellent semiconductor materials as high light photocatalysts for energy conversion. Herein, Bi4Ti3O12/CdS composites were synthetized by coprecipitation method, which CdS particles selectively deposited on Bi4Ti3O12 nanosheets. The phase structure and optical properties of the samples were characterized by XRD, SEM, N2 adsorption–desorption and UV-visible diffuse spectra (UV-DRS). The results showed that the Bi4Ti3O12/CdS composites had the highest photocatalytic activity against RhB under visible light, and the degradation rate of RhB was 98.8% after 120min of simulated light, 2.14 times that of pure Bi4Ti3O12, and the Bi4Ti3O12/CdS-10wt.% composites also showed good stability. UV-DRS demonstrated that the optical absorption range of the composite extends to visible regions, and photocurrent tests also showed that the composite enhances the separation and migration of photoogenic electron–hole pairs, mainly due to the formation of 2D nanosheets/0D particles heterojunctions between the bronzn CdS of the perovskite BTO and hexagonal fibers. Furthermore, free radical assays confirmed that both O2, h+ and OH have effects in the degradation of RhB, and thus suggested a possible mechanism for the photodegradation process of the Bi4Ti3O12/CdS-10wt.% composite photocatalyst.