Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Dependence of Thermal Shock Crack on Specimen Width for Ceramic Materials

    Knowledge of size effect of thermal shock properties of ceramics is a prerequisite in engineering applications. In the present study, the size effect of the cracking in the ceramic materials subjected to water quenching has been experimentally conducted. Based on the Rizk model, the equivalent specimen width of the elastic strip with cracks is introduced and modified to describe the effect of cracks on the deformation of the elastic strip underwater quenching. It is found that the simulation obtained from the proposed modified model is in good agreement with the experimental results. And the reasons for the size effect of crack depth and crack growth into the compressive region are well analyzed by theoretical results. The proposed model is expected to provide a powerful tool to characterize and predict the size effect on thermal shock crack of ceramic materials.