Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper investigates the dynamics of a model of two chemostats connected by Fickian diffusion with bounded random fluctuations. We prove the existence and uniqueness of non-negative global solution as well as the existence of compact absorbing and attracting sets for the solutions of the corresponding random system. After that, we study the internal structure of the attracting set to obtain more detailed information about the long-time behavior of the state variables. In such a way, we provide conditions under which the extinction of the species cannot be avoided and conditions to ensure the persistence of the species, which is often the main goal pursued by practitioners. In addition, we illustrate the theoretical results with several numerical simulations.
In this paper, we first construct a microfluidic chemostat model for the growth of biofilms and planktonic populations with random dilution ratios and then investigate its dynamical behavior. Using the theory of monotone dynamical systems and the Multiplicative Ergodic Theorem, we show the existence of random attractors and stationary measures, and present Lyapunov exponents for the linearized cocycle with respect to the random model. Further on, if the top Lyapunov exponent is negative, we give the extinction of microbial populations, including the forward and pull-back trajectories.