Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    PREPARATION OF CISPLATIN COMPOSITE MICRO/NANOFIBERS AND ANTITUMOR ACTIVITY IN VITRO AGAINST HUMAN TUMOR spc-a-1 CELLS

    Nano01 Aug 2011

    In this paper, the cisplatin composite micro/nanofibers were prepared by electrospinning. Average diameter of the typical products was about 700 nm, and cisplatins were incorporated in biodegradable poly (L-lactic acid) fibers. The controlled release of cisplatin can be gained for long time. The possible mechanisms of cisplatin release in the PBS and the PBS with proteinase K were discussed. 3-(4, 5)-dimethylthiahiazo-(-z-y1)-3, 5-di-phenytetrazoliumromide (MTT) method was used to test antitumor activities in vitro against human lung tumor spc-a-1 cells. When incubation time was 24 h, the same content of cisplatin from virgin cisplatin and the composite fibers has almost equal antitumor activity in vitro. However, when incubation time was 48 h, the composite fibers show much higher antitumor activity than the virgin cisplatin. The system may be useful in the postoperative local chemotherapy and have clinical applications as an implantable drug for tumor in the future.

  • articleNo Access

    Strong Adsorption of Al-Doped Bilayer Graphene Toward Anticancer Cisplatin

    Nano01 Jun 2018

    The adsorption of cisplatin on pristine monolayer graphene (MLG), pristine bilayer graphene (BLG) and Al-doped BLG (Al-BLG) was investigated using density functional theory. The obtained results showed that pristine MLG and pristine BLG were not sensitive to cisplatin. Adsorption energy can be primarily influenced by the atomic species rather than the adsorption position. Moreover, it is strong chemisorption of hollow-site Al-BLG (H-Al-BLG) toward cisplatin. The most stable configurations are the Pt or Cl atom interaction with the Al atom of H-Al-BLG. In conclusion, H-Al-BLG is a kind of potential high quality delivery carrier for anticancer cisplatin.