Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the present paper, the smoothness of a Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS), as described by its Lipschitz exponent, is investigated. This is achieved by considering the simulation of a generally uneven surface using CHFIS. The influence of free variables and Lipschitz exponent on the smoothness of CHFIS is demonstrated by considering interpolation data generated from a sample surface.
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated function system. The convergence results and effects of hidden variables are discussed for cubic spline CHFIFs.
Riemann–Liouville fractional calculus of Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is studied in this paper. It is shown in this paper that fractional integral of order ν of a CHFIF defined on any interval [a,b] is also a CHFIF albeit passing through different interpolation points. Further, conditions for fractional derivative of order ν of a CHFIF is derived in this paper. It is shown that under these conditions on free parameters, fractional derivative of order ν of a CHFIF defined on any interval [a,b] is also a CHFIF.
In this paper, a new notion of super coalescence hidden-variable fractal interpolation function (SCHFIF) is introduced. The construction of SCHFIF involves choosing an IFS from a pool of several non-diagonal IFS at each level of iteration. Further, the integral of a SCHFIF is studied and shown to be a SCHFIF passing through a different set of interpolation data.